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Further Comparison of Vibrational Frequencies

One reasonable question is whether the compressed sensing procedure outlined in the main

article accurately recovers changes in the vibrational modes (i.e. the eigenvectors of the

Hessian matrix) or whether it is helpful only in recovering changes in the vibrational fre-

quencies (i.e. only the diagonal elements on the Hessian matrix). To address this question,

we evaluated the true quantum mechanical (QM) vibrational frequencies along the vibra-

tional modes obtained by the cheap molecular mechanics (MM) calculation and compared

the results with compressed sensing. The results for anthracene are shown in Fig. S1. In par-

ticular, the figure compares the MM frequencies, the QM frequencies along the MM modes,

and the compressed sensing frequencies with 35% sampling of the QM calculations according

to the procedure described in the main article. (Note that the two plots present the same

data with different frequency scales on the y-axis.)
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Figure S1: The figure compares the MM frequencies, the QM frequencies along the MM
modes, and the compressed sensing frequencies with 35% sampling of the QM calculations
according to the procedure described in the main article for anthracene. (Note that the two
plots present the same data with different frequency scales on the y-axis.) The QM frequen-
cies along the MM modes are much more accurate than the MM frequencies themselves, but
only the compressed sensing calculation provides acceptable chemical accuracy.
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The top plot shows that computing the QM frequencies along the MM modes provides

a large improvement on the MM frequencies themselves, as expected since the eigenvalue

calculation is quantum mechanical in nature and only the eigenvectors are approximate.

However, substantial errors up to 100 cm−1 remain in some of the frequencies so this approach

does not suffice for chemical accuracy. In contrast, as the bottom plot shows, the compressed

sensing frequencies are nearly exact, and are far more accurate than the QM frequencies

computed along the MM modes. This result provides concrete numerical evidence that

compressed sensing accurately recovers changes not only in the eigenvalues (i.e. diagonal

elements of the Hessian matrix) but also in the vibrational modes themselves (i.e. the

eigenvectors). As can be seen, only the compressed sensing approach, with accurate recovery

of both vibrational modes and frequencies, suffices for chemical accuracy.

We also point out that as a method, computing the QM frequencies along the MM modes

is based on an uncontrolled approximation, and the method can fail if the normal modes are

predicted badly. With compressed sensing, a bad prediction of the normal modes is simply

reflected in a more expensive calculation, but the results would still be accurate to the QM

level.

Convergence Criterion

For practical implementation of the compressed sensing procedure (steps 1–7 in the main

article), an important requirement is a convergence criterion; namely, how do you know when

the procedure is done? In particular, without comparing to a full reference calculation, how

do you know when enough columns of the Hessian have been sampled to achieve accurate

vibrational modes and frequencies?

To address this question, we repeatedly applied the compressed sensing procedure (steps

1–7 in the main article) to the quantum mechanical Hessian matrix of anthracene, and each

time we sampled one additional column. For each additional column sampled, we computed
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the relative Frobenius norm (vectorial 2-norm) error against the full reference calculation,

Overall Errorn =
||Hn −Href||2
||Href||2

, (1)

where Hn is the Hessian recovered via compressed sensing with n columns sampled in the

measurement basis. We also computed the relative Frobenius norm error against the calcu-

lation in the previous step with one less sampled column,

Successive Errorn =
||Hn −Hn−1||2
||Hn||2

. (2)

Fig. S2 shows both types of error plotted as a function of the number of sampled columns

n. As the figure shows, the two errors track each other closely (never differing by more
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Figure S2: The figure shows both the overall error and the successive error in the Hessian
of anthracene obtained via the compressed sensing procedure described in the main article
as additional columns are sampled. Because the two errors track each other closely, the
successive error can be used as a basis for developing a convergence criterion in the absence
of a full reference calculation.

than an order of magnitude), but the successive error can be computed without access to

a full reference calculation. Small successive errors indicate that the Hessian matrix is no

longer changing when additional columns are sampled, and show that the calculation has
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converged. Hence, just as in many other numerical methods, the successive error provides

a measure for developing a convergence criterion. For example, to assure robustness, one

might demand small successive errors over three or four consecutive steps before declaring

the calculation complete.
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